Limiting Factors of RF Performance Improvement as Down-scaling to 65-nm Node MOSFETs

H. L. Kaoa*, B. S. Lina, C. C. Liaob, M. H. Chenc, C. H. Wuc, and Albert Chinb

aDept. of Electronic Engineering, Chang Gung Univ., Tao-Yuan, Taiwan, ROC
bNano-Sci. Tech. Ctr, EE. Dept., Nat’l Chiao-Tung Univ., UST, Hsinchu, Taiwan, ROC
cDept. of MicroElectronics Engineering, Chung Hua Univ., Hsinchu, Taiwan, ROC
*e-mail:snoopy@mail.cgu.edu.tw

Abstract — As continuous down-scaling the RF MOSFETs into 65 nm node, the RF performance of f_T, f_{max}, and NF_{min} also show the dependence on short channel effect owing to increasing drain current and transconductance. The device performance was improved by accurate higher drain bias conditions in the nano-scale devices, which produced a 20% enhancement of the saturation drain current, 5% f_T increased and 3% lowered NF_{min}. The NF_{min} of 0.63 dB, at 10 GHz under a drain bias of 1.2 V was found. However, the f_T improves continuously to 65 nm node transistors, but the f_{max} and NF_{min} is limited at 65 nm node devices than 90 nm node devices due to the parasitic effect.

Index Terms — NF_{min}, f_T, f_{max}, MOSFET.

I. INTRODUCTION

The performance of Silicon radio frequency (RF) MOSFETs is improving so fast in the recent years, associated with the down-scaling of the Si technology [1]-[8]. The RF noise and high frequency gain can be improved significantly every generation. However, the bias condition is sensitive to device performance in nanometer generation [9]-[10]. The short channel effect related channel-length modulation and the non-saturation of drain current are the important concerns for the DC performance of highly scaled MOSFET. As continuous down-scaling the RF MOSFETs into 65 nm node, the RF performance of unity-gain cutoff frequency (f_T), maximum frequency of oscillation (f_{max}) and minimum noise figure (NF_{min}) still show much smaller dependence on short channel effect than DC drain current (I_d) and trans- conductance (g_m). However, although the f_T improves continuously, the f_{max} and NF_{min} become worse at 65 nm node transistors than 90 nm node devices due to the limiting parasitic effect.

In this paper, we report the DC and RF performance of 65 nm node (45 nm physical gate length). Surprisingly, much smaller short channel effect on RF performance of f_T, f_{max} and NF_{min} were found than DC case. The non-saturating current is about ~20% variation when drain voltage is from 0.9V to 1.2V and also induces ~5.3% trans-conductance (g_m) variation for 65 nm RF MOSFETs.

In the meanwhile, the RF performance of cut-off frequency (f_c) increases 4.3% and minimum noise figure (NF_{min}) reduces 3% are also following the trans-conductance (g_m) variation. The major limiting factor of RF performance as scaling down to 65 nm node is the worse f_{max} and NF_{min} even though the f_T is better due to the limiting parasitic effect.

II. EXPERIMENT DETAIL

Multiple gate-fingered 65nm node RF MOSFETs, with 45 nm physical gate length and SiN gate oxide with 30Å equivalent oxide thickness (EOT) were studied in this work. These were fabricated on a p-type Si substrate with its typical 10 Ω-cm resistivity. The devices were fabricated on 12-in wafers at an IC foundry. To reduce the RF noise from the gate resistance and substrate network of their RF probing pads and the CPW lines, a microstrip line layout was used [1]-[3] instead of conventional CPW structure [4]-[7]. This was achieved by using Metal-1 (M1) as the ground plane of the transmission line [1]-[3], which allows direct measuring the NF_{min} without complicated de-embedding. This is possible due to the shield of RF noise generated from the VLSI-standard low resistivity Si substrate [1]-[3]. Standard open- and through- test patterns were used in de-embedding the intrinsic S-parameters [11]-[13]. The devices were measured using an HP4155C, HP8510C and ATN-NP5B for DC I-V, S-parameters and NF_{min}, respectively. A device model with a BSIM core and parasitic RC elements to terminals was used to analyze the data [2],[7].

III. RESULT AND DISCUSSION

A. Short channel effect on RF performance:

Fig. 1 shows the I_d - V_d characteristics for a typical 65 nm node RF MOSFET. In saturation region (V_{gs}-V_t < V_d), the I_d and g_m with different drain bias are discrepancy. An increase of 14.5% $I_{\text{d, saturation}}$ was observed as V_d increased from...
0.9 to 1.2 V. The increasing of $I_{ds,sat}$ is imperative due to channel length modulation in nanometer devices. This also leads to a 6.8% increase of g_m as shown in Fig. 2. Therefore, the DC characteristic with different drain bias in saturation region for short channel devices can not be neglected due to process variation or loading effect in circuit design.

![Fig. 1 The I_d-V_d characteristics of 65 nm node RF MOSFETs for various V_g biases.](image1)

![Fig. 2 The I_d-V_g and g_m-V_g characteristics of various V_d biases for 65 nm node RF MOSFETs.](image2)

The RF current gain ($|H_{21}|^2$) and maximum available power gain (G_{max}) as a function of frequency for the 65 nm node devices is shown in Fig. 3(a). The unity-gain cut-off frequency (f_T) was obtained by the extrapolation of $|H_{21}|^2$ to 0 dB and f_{max} by the extrapolation of G_{max} to 0 dB. Similar to the DC case, the $|H_{21}|^2$, G_{max}, f_T and f_{max} also increased slightly as the drain bias increases from 0.9 to 1.2 V. This leads to the increase of the unity-gain cut-off frequency (f_T) from 162 GHz to 169 GHz. The lower current gain and f_T at V_d equal to 0.6 V is due to smaller drain current at non-saturation region. Figure 3(b) displays the f_T, g_m and $|H_{21}|^2$ dependences for the 65 nm node RF MOSFETs. The f_T curve follows the g_m curve with respect to V_{ds}. Thus, the improvement in f_T is consistent with the higher saturation current and higher g_m, arising from the channel-length modulation.

The RF noise is difficult to measure in Si MOSFETs due to the strong parasitic substrate loss that dominates the noise in as-measured NF_{min}. De-embedding is required to give the much smaller intrinsic NF_{min} but it can produce errors. Our transmission line layout permitted the direct measurement of the intrinsic NF_{min}, without the need for de-embedding of the parasitic pads and the substrate loss [1]-[3]. Fig. 4 displays the as-measured NF_{min} as a function of frequency. The low NF_{min} of 0.63 dB at 10 GHz under a drain bias of 1.2 V was obtained for 65 nm node RF MOSFETs. The measured NF_{min} shows a similar improving trend with increasing V_{ds} also shown in Fig. 3(b). At 10 GHz, NF_{min} values of 0.68, 0.65, 0.64 and 0.63 dB were obtained for $V_d = 0.6, 0.9, 1.0$ and 1.2 V. It is worth noting that the improved noise is important when short-channel devices are operated at RF frequencies.

![Fig. 3 (a) The $|H_{21}|^2$ and G_{max} vs. frequency of various V_d. (b) The cut-off frequency (f_T), g_m and NF_{min} vs. V_d bias.](image3)
Fig. 4 The NF_{min} of various V_d biases for 65 nm node RF MOSFETs. The line is simulation data.

Table 1 summarizes the DC & RF device parameters for 65 nm MOSFETs at different V_d. The amount of variation to drain bias is much lower for RF f_T, $|H_21|^2$, G_{max} and NF_{min} than DC I_{dsat} and g_m suffering from short channel effect. The lower variation of f_T is due to the increasing feedback and parasitic capacitance at higher V_d that compensates the g_m increase in following equation:

$$f_T = \frac{g_m}{(C_{gs} + C_{gd})}$$

The smaller NF_{min} variation is due to the dominating gate resistance (R_g) and g_m product in square root in combination of the smaller f_T variation from a circuit-theory-derived equation [7]:

$$NF_{\text{min}} = 1 + 2 \frac{f_T}{f_T} \sqrt{(\gamma + \frac{4}{15})(\gamma + g_m R_g)}$$ (2).

Here γ is the drain current noise correlation factor – where the ideal value of 2/3 was used in the fitting procedure. Good agreement between the measured and eq. (2) calculated NF_{min} are also shown in Fig. 4. From eq. (2) one can deduce that the primary factor leading to the moderate improvement in NF_{min} at higher V_d is the increase in f_T.

B. Degraded f_max & NF_{min} under improved f_T during scaling:

Figs. 5 and 6 show the down-scaling trend of the f_T, f_max, NF_{min}, g_m and R_g characteristics from LG of 0.18 μm to 65 nm, where the data of 90 to 0.18 μm node devices are from earlier reports [1]-[3], [8]. The NF_{min} and f_max shows degraded performance as scaling to 65 nm node devices even though having the higher f_T. The degraded NF_{min} on the down-scaled LG is due to the higher $R_g \times g_m$ by the eq. (2). For 90 nm to 0.18 μm node devices, the NF_{min} decreases with gate length due to small R_g and g_m makes the $R_g \times g_m$ less significant than γ- the drain current noise correlation factor. However, both the better g_m and poorer R_g dominate the NF_{min} at 65 nm node devices. The higher R_g is unavoidable due to shorter LG at highly scaled transistors, which also causes the degradation of f_max even though under the higher f_T during scaling:

$$f_\text{max} = \frac{f_T}{2\sqrt{(R_g + R_g + R_g)g_{ds} + 2\pi f_T R_g C_{gd}}}$$ (3).

Therefore, the degradation of R_g largely limits the further improvement of f_max and NF_{min} at sub-65 nm node devices due to the limiting parasitic effect. Further improving the RF performance for 65 nm node devices or below is using the CMP-planar process to replace the gate and gate electrode materials as recently developed [14].

Fig. 5 Measured f_T, f_max and NF_{min} of down-scaled RF MOSFETs.

<table>
<thead>
<tr>
<th>Device @ $g_{m,\text{max}}$ (V_g=1.0V)</th>
<th>V_d=0.9V</th>
<th>V_d=1.0V</th>
<th>V_d=1.2V</th>
<th>% (from 0.9 to 1.2V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturation current I_{dsat} (mA)</td>
<td>20</td>
<td>21</td>
<td>22.9</td>
<td>14.5</td>
</tr>
<tr>
<td>Transconductance g_m (mS)</td>
<td>41.1</td>
<td>42.6</td>
<td>43.9</td>
<td>6.8</td>
</tr>
<tr>
<td>Gate resistance R_g (Ω)</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>Cut-off frequency f_T (GHz)</td>
<td>162</td>
<td>166</td>
<td>169</td>
<td>4.3</td>
</tr>
<tr>
<td>Current gain $</td>
<td>H_21</td>
<td>^2$ (dB)</td>
<td>42.6</td>
<td>42.9</td>
</tr>
<tr>
<td>Max. power gain G_{max} (dB)</td>
<td>26.1</td>
<td>26.2</td>
<td>26.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Min. noise figure NF_{min} (dB)</td>
<td>0.65</td>
<td>0.64</td>
<td>0.63</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Fig. 6 Measured g_{m} and R_{g} of down-scaled RF MOSFETs.

IV. CONCLUSIONS

We have shown the RF performance can be improved at accurate drain bias for 65 nm node MOSFETs. Typical values for NF_{min} were 0.63 dB at 10 GHz and 169 GHz for f_{t} of 65nm RF MOSFETs. In spite of the strong dependence of short channel effect on DC characteristics at 65 nm node devices, the RF performance is limited by the parasitic effect that requires novel device and process optimization.

ACKNOWLEDGEMENT

We would like to thank G. W. Huang at the National Nano-Device Lab for his help with the RF measurements. This work was partially supported by UERPD280012 of CGURP and NSC (97-2221-E-182-017) of Taiwan.

REFERENCES

